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PREDICTING POLYMER PROPERTIES BY COMPUTATIONAL METHODS 2:
A COMPARISON OF SEMI-EMPIRICAL METHODS

1. INTRODUCTION

In a previous report 1 the Modified Neglect Differential Over-
lap (MNDO) method of Dewar and Thiel 2 was used to calculate the physical
properties of vinyl chloride and its homologs. The results of these
calculations compared favorably to the available experimental data. Improve-
ments to the MNDO model, namely the AMI and PM3 methods, 3 ' 4 have recently
stimulated debate about the better method of calculating properties such as
heat of formation, dipole moment, and polarizability. 5 ,b In past studies that
used these methods,7,8,9 no statistical analysis has been done to establish
the accuracy of each method for predicting each property. In this report, the
heat of formation, dipole moment, and polarizability, calculated by using
MNDO, AMI, and PM3, are compared with experimental results. The objective of
this work was to statistically examine the limitation and accuracy of each
method in predicting the above mentioned properties.

2. WHY SEMI-EMPIRICAL METHODS?

The physical properties of a compound can be theoretically
calculated either by a semi-empirical method or by a more elaborate ab initio
technique.I 0' 1  These approaches are based on molecular orbital theory. The
ab initio model seeks the best solution of the Schrodinger wave equation,
using the Hartree-Fock orbital estimating techniques, where the orbitals are
estimated by linear combinations of hydrogen-like (Slater) atomic orbitals
method. An approximate solution to the Schrodinger equation can be achieved
only by using a basis set with a large number of orbitals. However, these
high level ab initio calculations require too much computing time, even for
moderate-sized (10 to 20 atoms) molecules, to be practical. The simpler-
ab initio treatment uses minimum basis set too inaccurately to be chemically
useful for most polyatomic molecules. Thus, to achieve the required accuracy,
the higher level calculations must be used.

The second molecular orbital approach the semi-empirical model, is
based on a completely different philosophy.12,13 Semi-empirical methods are

used to avoid solving time-consuming integrals involved in the solution of the
Schrodinger equation. The most popular semi-empirical methods (MNDO, AMI,
PM3) use experimental data to parameterize these integrals. This is done in
such a way that the solutions of the Schrodinger equation are adjusted to fit
experimental data for each atom. These parameterized solutions for the atoms
are used to effect a solution to the Schrodinger equation for any molecule
containing the atoms for which solutions exist. Because these parameterized
solutions for the atoms obviate a number of integrals, the semi-empirical
methods yield reasonable and reliable estimates of the solution to the
Schrodinger equation with much less computational time and can be used to
find solutions for larger molecules. Dewar and co-workers have shown that for
heats of formation, the accuracy of the semi-empirical method is comparable to
that of quite larger set ab initio calculations.14
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3. AB INITIO VERSUS SEMI-EMPIRICAL METHODS

To quantify the claim that semi-empirical methods yield comparable
results for much less time, we have used semi-empirical methods to compute the
dipole moment, polarizability, and structural data for vinyl chloride (CH2
CHCI) and ethyl chloride (C2 H5 Cl). The dipole moment and polarizability
calculated using three semi-empirical methods and one ab initio method (321-G)
is compared to the experimental values in Table I and Table 2. Also, the CPU
time required for each method of calculation is included. The semi-empirical
methods yield results that are equivalent or better than the (321-G) ab initio
method and requires much less computer time. As the number of atoms in the
molecule increases, the required computational time increases as n 4 , where n
is the number of electrons.1 0 A simple calculation for the dimer (two monomer
units of CH2 - CHCl) gives a necessary CPU time of about 80 hr 5or this
(321-G) calculation.

Table 1. Comparison of Ab Initio Versus Semi-Empirical
Calculations for Vinyl Chloride

Method Dipole Moment (Debye) Polarizability (A3) CPU Time

Experiment 1.4516 6.4116

MNDO 1.71 5.84 1 min or less
AMI 1.19 3.34 1 min or less
PM3 0.93 3.41 1 min or less
321-G 1.93 4-1/2 hr

Table 2. Comparison of Ab Initio (321-G) Versus Semi-Empirical
Calculations for Ethyl Chloride

Method Dipole Moment (Debye) Polarizability (A3) CPU Time

Experiment 2.0516 6.4016 -2 min
MNDO 2.09 6.26 -2 min
AMI 1.69 3.32 -2 min
PM3 1.55 3.30 -2 min
321-G 2.50 4.33 -5 hr

A comparison of available experimental structural data of CH2 =
CHC1 15 and C2 H5 Cl with calculated values is given in Table 3 and 4. Again,
the values from the semi-empirical calculations are comparable to the values
from ab initio calculations. From a consideration of the computing time
alone, the semi-empirical method is the method of choice. In some cases, the
semi-empirical method results approximates the experimental data better than
the ab initio calculation.
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Table 3. Comparison of Structural Parameters of Vinyl Chloride:
Semi-Empirical Methods Versus Ab Initio Method

r (C = C) r (C - Cl) r (C - H) < (C-C-Cl)
Method (A°) (A-) (A0 ) (Degree)

Experiment 1.3615 1.7315 1.0815 121.115
MNDO 1.34 1.75 1.09 122.9
AMI 1.33 1.70 1.09 123.4
PM3 1.33 1.69 1.10 121.2
321-G 1.31 1.75 1.07 122.8

Table 4. Comparison of Structural Parameters of Ethyl Chloride:
MNDO, PM3, AMI Versus Methods Versus Ab Initio Method

r (C - Cl) < (C-C-Cl)
Method (AG) (Degree)

Experiment 1.7617 111.50
MNDO 1.81 112.18
AMI 1.78 109.00
PM3 1.81 112.10
321-G 1.82 110.90

4. METHOD OF COMPUTATION

4.1 Computational Chemistry.

The calculations were carried out on a Microvax (Digital Equipment
Corporation, Stanford, CA) using the MOPAC package of computer programs. 1 8

The three semi-empirical methods (MNDO, AMI, and PM3) were contained in the
MOPAC. All structures were fully optimized using standard HMADS techniques19
developed by the Chemometric and Biometric Modeling Branch, U.S. Army Chemical
Research, Development and Engineering Center.

4.2 Statistical Methods.

As previously stated, the purpose of this study was to determine the
ability of each of the three semi-empirical methods to calculate the heat of
formation, dipole moment, and polarizability and ionization potential. To
enable us to determine the accuracy of the calculation (i.e., the standard
deviation (SD) of the error, in a statistically meaningful way), we need to
show that the calculation errors are symmetrically distributed. This is done
by showing that the data follow the normal distribution function. One way to
show that a data set is normally distributed is to order it in an ascending
order and then plot the data on a normal distribution graph paper. For
example, we can take the weight of nine people (n=9) selected at random, sort
them in ascending order, and then scale the linear axis so that all weights
will fit. Finally, plot the cumulative fraction on the probability axis
versus the weight on the linear axis, letting the denominator of the fraction
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equal n+1 (for symmetry). Thus, the lightest weight would be plotted versus
0.1 (I/n+l), the next lightest versus 0.2, and so on until the heaviest would
be plotted against 0.9 (nln+l). If the weights were normally distributed,
the resulting nine points would fall on a straight line. Alternatively, the
normal score, that is the expected value of the normal order statistic of
an ordered sample of size n can be calculated. In the statistical package
MINITAB(tm), the normal score is abbreviated N-score. Plotting the N-score
against normally distributed data results in the points falling about a
straight line.

Calculating the N-score requires numerical solution of integral
equations. The N-score calculation is available in some statistical packages
on minicomputers but is not available in commonly used software packages
for microcomputers. To enable us to perform the analysis on a desktop
microcomputer, we need to find a distribution function that will closely
resemble the normal distribution but will be easier to compute. The logistic
distribution is such a distribution. Its straight line transform, which we
will call the L-score, is obtainable in closed form and is simple to
calculate.

Figure 1 shows a comparison of L-score and N-score. The figure was
produced as follows. The N-score of an order set of numbers from 1 to 1000
using minitab(tm) was calculated on the VAX minicomputer. The data was then
downloaded into a spread sheet on a desktop personal computer. The L-score

i
was calculated according to L-score(i) In ----------, where i is the order

n - i + i
of the item in the list and n is the total number of items. The dashed line
is the plot of L-score versus N-score. The solid line is a least-squares-
fitted straight line through the data. As can be seen, the two lines
coincide except at the ends where the slightly heavier tails of the logistic
distribution causes a slight curvature away from the straight line. The
correlation coefficient (R-squared) of the two measures is .994.

The calculated value was subtracted from the experimental value for
each molecule. The result or its transformation was plotted against L-score,
and the correlation coefficient of the least squares regression line was
determined. The plot was examined visually to determine any outliers and
whether the fit would improve in a limited region. The average and SD of the
transformed data was calculated in the symmetry region as was the R-Square for
the least square regression line. The following procedures should be followed
to choose the best method for calculating the physical property in the region
at a 95% confidence level.

0 For each of the three different methods, plot the difference
between the calculated and experimental value of the property estimated versus
its L-score. (Alternatively, plot the difference of the transformed data
versus L-score.)

12
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0 Determine a region (magnitude of calculated and experimental
values) where the L-score plot forms a straight line, indicating a symmetrical
"normal" distribution of errors. Transformed and untransformed data may have
to be used for different regions (e.g., the data can be normally distributed
in one region and lognormal in another).

0 Calculate the R-square between the difference and the L-score for
the appropriate region.

* Calculate the mean and SD of the approximation error in the
appropriate region.

0 A method that has an R-square of .94 or larger is well
approximated by the normal distribution. Among those methods that satisfy
this criterion, choose the method that has the smallest SD. If the smallest
SD is >2.28 times the size of the SD of another method whose R-square is <.94,
choose the method with the smaller SD regardless of the value of R-square.

* Approximately 95% of the time, the true value will be in the range
<calculated value - bias +20>.
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5. RESULTS AND DISCUSSION

The focus of our computations has been on predicting properties
of polymers. Therefore, we have chosen a number of polymer forming
molecules that contain single and double bonded carbon-atoms (ethyl and
vinyl compounds). The compounds represent a variety of substituted ethylene
and vanillic molecules, dictated by the availability of experimental data.
Table 5 lists the compounds studied and their chemical formulas.

Table 5. Molecules Investigated

Molecule Number Molecule Name Molecular Formula

1 Ethylene C2 H4
2 Vinyl Chloride C2 H3 Cl
3 Vinyl Bromide C2 H3 Br
4 Ethyl Chloride C2 H5 Cl
5 Ethyl Bromide C2 H5 Br
6 Vinylidene Chloride C2 H2 C12
7 Vinyl Acetate C4 H6 02

8 Ethyl Acetate C4 H8 02
9 Ethyl Alcohol C2 H5 0H

10 Vinyl Cyanide C3 H3 N
11 Ethyl Cyanide C3 HAN
12 Tetrafluro Ethylene C2 F 4

5.1 Heat of Formation.

The experimental and calculated heat of formation for the molecules
investigated are listed in Table 6. The computed results for each molecule
and each method of calculation are listed together with the experimental
values. Figure 2 depicts the same information graphically. Note, if the
calculated and experimental results were identical, all the points in Figure 2
would fall on the diagonal line. Figure 3 shows t a deviation between the
experimental and calculated values versus the experimental values of the heat
of formation. Close examination of Figure 3 indicates that as the absolute
value of the heat of formation becomes larger, the absolute value of the
deviation increases, as can be expected. However, determining which of the
three methods yield more reliable results from either Figures 2 or 3 is
impossible.
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Table 6. Comparison Between Experimental and Calculated Heat of Formation

Heat of Formation Kcal/mole
Calculation Calculation Calculation

Molecule Experiment 1 6  MNDO AMI PM3

Ethylene 14.5 15.4 16.5 16.6
Vinyl

Chloride 8.1 4.9 5.8 9.7
Vinyl

Bromide 18.7 15.8 18.0 23.8
Ethyl

Chloride -26.8 -28.8 -26.2 -22.1
Ethyl

Bromide -15.4 -17.0 -13.1 -11.3
Vinylidene

Chloride 0.6 0.0 0.0 3.1
Vinyl

Acetate -74.5 -68.9 -67.7 -68.2
Ethyl

Acetate -106.0 -98.9 -101.9 -98.8
Ethyl

Alcohol -56.2 -63.0 -62.7 -56.9
Vinyl

Cyanide 43.0 43.9 45.0 50.2
Ethyl

Cyanide 12.3 13.8 13.2 18.6
Tetrafluro

Ethylene -154.7 -175.7 -175.1 -168.2
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The calculation errors are plotted against L-score in Figures 4, 5,
and 6 for MNDO, AM1, and PM3, respectively. As can be seen, the correlation
coefficients for the regression line for all three methods are fairly low,
which indicates that the distribution of the deviation between the calculated
and experimental data are not symmetrical. Closer examination shows that
in all cases there is one outlier (indicated by an arrow). The outlier in
all cases is tetrafluro ethylene with a large (absolute) heat of formation
(154.7 Kcal/mole). If this value is removed from the analysis, the
correlation coefficient improves significantly for all three methods. The
correlation coefficient improvements can be seen in Figures 7, 8, and 9
indicating that in all three methods the differences between the calculated
and experimental heat of formation is symmetrically distributed for molecule
that have heat of formation of about 100 kcal/mole (absolute) or lower. The
mean and the SD a and the R-Square are given in Table 7. The "mean error"
indicates a systematic error in the calculation and the SD indicates the
random distribution of the errors or precision. Thus, the range of heat of
formation for molecules for which experimental value is not available can be
estimated by (calculated velue-bias ±2a) with 95% confidence.
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Figure 4. Test for Normal Distribution - Heat of Formation, MNDO, All Data
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Table 7. Bias and SD of Calculated Heat of Formation

MNDO AMI PM3

Bias -2.00 -1.26 2.74
a 7.07 6.86 5.43
R - Square 0.95 0.94 0.94

Figure 10 shows the relative difference of the calculated and
experimental values as a function of the experimental values. Again, it
is not possible to determine which of the three methods would yield better
results. Figures 11, 12, and 13 show the relative differences as a function
of their respective L-score. As can be seen, the relation is linear except
for compounds with small (absolute) heat of formation. This can be expected
since a small absolute error for these compounds will be large, relative to
the heat of formation absolute value. When the outliers are removed, the
linearity of the line become apparent as can be seen in Figures 14, 15, and
16. Table 8 gives the average, SD and R-square of the relative error in the
applicable region.
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Table 8. Bias and SD of the Relative Calculated Heat of Formation

MNDO AMI PM3

Bias 0.03 0.02 0.07
a 0.10 0.09 0.21
R - Square 0.9 0.94 0.98

5.2 Dipole Moment.

The experimental and calculated values of the dipole moment are
listed in Table 9 and are plotted in Figure 17. The calculation errors are
plotted against the dipole moment in Figure 18. From these figures, it is
not possible to determine which is the better method to calculate this
property. The calculation errors are plotted against their respective
L-score in Figures 19, 20, and 21 and the statistics data are given in

24



Table 9. Comparison Between Experimental and Calculated Values
of Dipole Moment

Dipole Moment Debye (D)
Calculation Calculation Calculation

Molecule Experiment1 6  MNDO AM1 PM3

Ethylene 0.0 0.0 0.0 0.0
Vinyl

Chloride 1.45 1.71 1.19 0.93
Vinyl

Bromide 1.36 1.31 1.31 1.33
Ethyl

Chloride 2.05 2.08 1.69 1.55
Ethyl

Bromide 1.90 1.66 1.66 1.84
Vinylidene

Chloride 1.28 1.85 1.21 0.78
Vin-'

A,.etate 1.79 1.66 1.73 1.77
Ethyl

Acetate 1.82 1.85 1.80 1.84
Ethyl

Alcohol 1.66 1.40 1.55 1.45
Vinyl

Cyanide 3.67 3.00 3.00 3.25
Ethyl

Cyanide 3.50 2.71 2.94 3.25
Tetrafluro

Ethylene 0.00 0.00 0.00 0.00
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Table 10. Bias and SD of the Calculated Dipole Moment

MNDO AM1 PM3

Bias -0.10 -0.29 -0.21
a 0.36 0.22 0.21
R - Square 0.93 0.85 0.85

5.3 Polarizability.

The experimental and calculated values of the polarizability are
listen in Table 11 and are plotted in Figure 17. The calculation errors are
plotted against the polarizability in Figure 22. From examining Figures 22
and 23, the polarizability results, calculated by the MNDO method given
appears to be closest to the experimental values. However, closer examination
(Figures 24-27) indicates that the calculation errors are not symmetrically
distributed (i.e., the line of the calculated error against the L-score has
low R-Square) giving any estimate low confidante level. On the other hand,
the results obtained by PM3 are biased (Table 12), but the errors are
distributed symmetrically around the calculated values giving the estimate a
high degree of confidence.
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Table 11. Comparison of Experimental and Calculated
Polarizability

Polarizability
Calculation Calculation Calculation

Molecule Experiment 1 6  MNDO AM1 PM3

Ethylene 4.25 3.88 2.47 2.23
Vinyl

Chloride 6.41 5.84 3.34 3.41
Vinyl

Bromide 7.57 6.99 3.67 3.83
Ethyl

Chloride 6.40 6.26 3.32 3.30
Ethyl

Bromide 8.05 7.44 3.70 3.85
Vinylidene

Chloride 7.89 7.90 4.30 4.70
Vinyl

Acetate 8.20 8.87 6.30 5.80
Ethyl

Acetate 9.70 9.05 5.97 5.40
Ethyl

Alcohol 5.11 5.02 3.05 2.70
Vinyl

Cyanide 8.05 6.04 4.28 4.23
Ethyl

Cyanide 6.24 6.15 4.02 3.82
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Table 12. Bias and SD of the Calculated Polarizability

MNDO AM1 PM3

Bias -0.40 -3.04 -3.15
a 0.63 0.87 0.75
R - Square 0.83 0.93 0.95

5.4 Ionization Potential.

The experimental and calculated values of the dipole moment are
listed in Table 13 and are plotted in Figure 17. The calculation errors are
plotted against the dipole moment in Figure 28. It is not possible, from
these figures, to determine which is the better method to calculate these
properties. The calculation errors are plotted against their respective
L-score in Figures 29, 30, and 31 and the calculation errors are given in
Table 14.

Table 13. Comparison of Experimental and Calculated
Ionization Potential

Ionization Potential (EV)
Calculation Calculation Calculation

Molecule Experiment1 6  MNDO AMI PM3

Ethylene 10.5 10.2 10.5 10.6
Vinyl

Chloride 10.0 10.4 10.2 9.8
Vinyl

Bromide 9.8 10.3 10.2 10.9
Ethyl

Chloride 11.0 12.1 11.2 10.4
Ethyl

Bromide 10.3 11.5 10.7 10.9
Vinyl

Acetate 9.2 10.0 9.9 10.1
Ethyl

Acetate 10.1 11.4 11.2 11.2
Ethyl

Alcohol 10.5 11.3 10.9 10.9
Vinyl

Cyanide 10.9 10.6 10.9 10.9
Ethyl

Cyanide 11.8 12.6 12.0 12.0
Tetrafluro

Ethylene 10.1 10.7 10.2 10.8
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Table 14. Bias and SD of the Calculated Ionization Potential

MNDO AM1 PM3

Bias 0.55 0.31 0.32
a 0.55 0.31 0.47
R - Square 0.91 0.84 0.98

6. CONCLUSIONS

This report clearly shows the value of employing rigorous statistical
methods when evaluating the adequacy of semi-empirical molecular orbital
methods. We showed that by employing the right methods we were able to
separate systematic and random errors in the calculation. Table 15 summarizes
the results obtained in this study with a limited set of data. The table
provides the recommended calculation method for each of the four physical
properties studied together with the bias and SD of the calculation errors.
In the near future, we plan to extend the analysis to a much larger data set
to validate the methodology developed here.

Table 15. Recommended Computational Methods for Heat of Formation,
Ionization Potential, Dipole Moment, and Polarizability

Physical Recommended
Property Method Bias SD (a)

Heat of For molecules with -2 (Kcal/mole) 7.1 (Kcal/mole)
Formation heat of formation for MNDO for MNDO

below 10 Kcal/mole
(absolute) use MNDO

For molecules with heat 0.03 for the 0.1 for the
of or reaction above ratio of ration of
100 Kcal/mole (absolute) Calculated Calculated
use PM3 Experimental Experimental

for PM3 for PM3

For molecules with heat
of formation between 10
and 100 Kcal/mole use
either one

Ionization
Potential PM3 0.32 (ev) 0.47 (ev)

Dipole Moment MNDO -0.1 (deby) 0.36 (deby)

Polarizability PM3 -3.15 (A3 ) 0.75 (A3 )
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